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Scaling behaviour in the fracture of fibrous materials
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Abstract. We study the existence of distinct failure regimes in a model for fracture in fibrous materials.
We simulate a bundle of parallel fibers under uniaxial static load and observe two different failure regimes:
a catastrophic and a slowly shredding. In the catastrophic regime the initial deformation produces a crack
which percolates through the bundle. In the slowly shredding regime the initial deformations will produce
small cracks which gradually weaken the bundle. The boundary between the catastrophic and the shredding
regimes is studied by means of percolation theory and of finite-size scaling theory. In this boundary, the
percolation density ρ scales with the system size L, which implies the existence of a second-order phase
transition with the same critical exponents as those of usual percolation.

PACS. 62.20.Mk Fatigue, brittleness, fracture, and cracks – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion – 64.60.Ak Renormalization-group, fractal, and percolation studies
of phase transitions

1 Introduction

The nature of fracture of non-homogeneous materials is an
important problem in material science research. Computer
simulations of the fracture phenomenon are very useful
since the analytical approachs are very difficult to per-
form. This difficulty arises from the non-uniform character
of the material and their discrete nature, which are fun-
damental ingredients for understanding the rupture pro-
cess [1]. Usually, computer simulation in these materials
gives interesting results, however the high degree of corre-
lations between the constituents leads to a high computa-
tional cost. Bundles of unidirectional fibers form a system
with low degree of correlations allowing the fracture pro-
cess be simulated in a large scale.

The study of fibrous materials is not recent, as one
can find in the work of Daniels [2], who in 1941 stud-
ied the rupture of a bundle of fibers with a known prob-
ability distribution of strength. Recently, Hansen and
Hemmer [3] studied the distribution H(S) of the sizes S
of burst avalanches, i.e., an instantaneous propagation of
a crack. They found a power-law behaviour: H(S) ∼ S−α
with the exponent α depending on how the load is shared
between the fibers. For global load sharing, where the
load is shared equally among non breaking fibers, they ob-
tained α = 2.5. For local load sharing, when a fiber breaks
its load is shared among nearest-neighbours no breaking
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fibers, they obtained α = 4.5. Those results have been ob-
tained for a one-dimensional lattice of fibers, that is, the
load sharing is the only correlation between the fibers.
Other approaches have been introduced to discuss this
problem [4,5]. The role of the homogeneous support ma-
trix on the failure of composite materials has also been
discussed by some authors [6–8].

A model of a bundle of unidirectional fibers, which
takes into account external parameters like temperature
and velocity of traction, has been proposed in 1994 by
Bernardes and Moreira [9]. In this model, the correlations
between the fibers are present through the probability of
rupture of a fiber, which depends on the number of un-
broken nearest neighbouring fibers. A cascade mechanism
– inspired on models for avalanches – is used to propa-
gate cracks through the material: when a fiber breaks, its
neighbours are visited and can break too. In this model,
all unbroken fibers have the same deformation, i.e., one
has global load sharing. However, the cascade mechanism
introduces a local effect. In a subsequent work [10], the
dependence of the frequency of cracks with the crack sizes
were used to determine the failure regimes. Two basic
regimes were discussed: a regime where cracks of the size
of the system were present and another one where only
small cracks appeared. Those regimes were identified, re-
spectively, with the brittle and ductile failure regimes.
The criterion used to distinguish one regime from another
was based on self-organized criticality, i.e., in the brittle-
ductile transition region, cracks of all sizes were present.
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However, they did not take into account finite size effects
in their analysis, which are very important in this type
of process. In fact, a finite-size scaling analysis should be
performed, in order to guarantee a better definition of the
failure regimes.

The aim of the present paper is to introduce a crite-
rion which defines the failure regimes on fibrous materials.
When a fiber bundle breaks, two regimes can be observed:
a catastrophic regime, when a sufficiently large number
of fibers are simultaneously broken, and a slow process of
successive rupture of fibers, here called shredding regime.
The first regime occurs at low temperatures and/or high
strains and are similar to a brittle fracture. It is charac-
terized by the fact that an initial deformation produces
a large crack which percolates through the bundle. The
shredding regime occurs for higher temperatures and/or
lower strains, and is similar to the ductile regime. In this
case, the first deformations produce small cracks which
weaken the bundle and thus cause its failure. The crite-
rion is implemented by considering the static failure of a
modified version of the model introduced by Bernardes
and Moreira [9]. A second order phase boundary between
two regimes is found for a given strain. A finite-size scal-
ing analysis is used to determine the critical temperature
and exponents.

2 The model

The model for the fibrous material here discussed consists
of a bundle of N0 = L × L parallel fibers with a cross-
section forming a triangular lattice. Each fiber has the
same elastic constant k, and they are fixed at both ends
to parallel plates. One plate is fixed and the other plate
can be pulled by an external force. When the bundle is
pulled by a force F , all fibers undergo the same linear de-
formation z = F/Nk, where N is the number of unbroken
fibers. We assume that a fiber has a failure probability
which increases with the deformation z. When this defor-
mation reaches a critical value zc, the breaking probability
of an isolated fiber is equal to one. When the bundle has
a deformation z, a fiber i has a failure probability related
to its elastic energy and to the number of unbroken neigh-
bouring fibers ni, given by

Pi(δ) =
z/zc

ni + 1
exp

(
(kz2/2)− (kz2

c/2)
KBT

)
. (1)

Defining the strain of the material as δ = z/zc and the
normalized temperature as t = KBT/Ec, where T is the
absolute temperature, Ec = kz2

c/2 is the critical elastic
energy and KB is the Boltzman constant, we can rewrite
the failure probability as

Pi(δ) =
δ

ni + 1
exp

(
δ2 − 1
t

)
. (2)

This definition of the failure probability is different from
that used by Bernardes and Moreira [9], since now we have
introduced δ as a multiplicative factor to impose that, for
δ = 0, Pi(δ) = 0.

The static failure of a fiber bundle is produced by ap-
plying a constant force F0 to the bundle, for example, by
hanging a weight on the moving plate. The initial strain
of the bundle is given by

δ0 =
z0

zc
=

F0

N0kzc
· (3)

The simulation of the rupture process proceeds as follows.
At each time step of the simulation, we randomly choose
a set of Nq (= qN0) unbroken fibers, where the number q
represents a percentage of fibers and it allows us to work
with any system size. So, differently of an Ising model,
where all the sites are “tested” at each time step, in our
model only a number Nq of randomly chosen unbroken
fibers are tested. It represents the continuous growth of
the bundle due to the continuous traction. For each cho-
sen fiber, we evaluate the probability of rupture, using
equation (1), and compare it with a random number in
the interval [0,1). If the random number is less than the
failure probability, the fiber breaks. To simulate the load
spreading, the same process is repeated for all neighbour-
ing unbroken fibers. The failure probability of these neigh-
bouring fibers increases due to the decreasing of ni and a
cascade of breaking fibers may begin. This procedure de-
scribes the propagation of a crack through the fiber bun-
dle, which occurs in all directions perpendicular to the
force applied to the system. The cascade process stops
when the test of the probability does not allow the rup-
ture of any other fiber on the border of the crack or when
the crack meets another already formed crack. This colli-
sion leads to the fusion of cracks, and it is the mechanism
to explain the rupture of the material in the shredding
regime. The same cascade propagation is attempted by
choosing another fiber of the set Nq. After all the Nq
fibers have been tested, the strain is increased if some
fibers have been broken. This new strain is the same for
all the remaining unbroken fibers. Since the force is fixed
(the weight hung on the bundle), the greater the num-
ber of broken fibers, the larger is the strain on the fibers,
and the higher is the failure probability. Then, other set
of Nq unbroken fibers is chosen and the rupture process
restarts. This process stops when all the fibers are broken,
i.e., the bundle breaks apart. In this model, a combina-
tion of local and global load sharing occurs. That is, after
a fiber breaks, a cascade may begin which simulates the
local load sharing. When the cascade process stops, the
stress is distributed equally between all unbroken fibers
which is the global load sharing.

3 Results

The failure probability (Eq. (2)) can be written as

Pi(z) =
Γ (t, δ)

(ni + 1)
, (4)

where we introduce the parameter Γ (t, δ) defined as

Γ (t, δ) = δ exp
(
δ2 − 1
t

)
. (5)
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Fig. 1. Density of the percolating cluster ρ versus the initial
strain δ0 for two different temperatures: t = 1.0 (filled circles)
and t = 4.0 (open diamonds). The system size is L = 1000
and the data were averaged over 1000 statistically independent
samples.

For a triangular lattice (with coordination number 6) and
Γ (t, δ) ≥ 6, the rupture of any fiber induces the rupture
of the whole bundle, i.e., the bundle breaks with just one
crack. Obviously, this crack forms a cluster which perco-
lates through the entire system.

We can define the density of the percolation crack as

ρ =
Npc

N0
, (6)

where Npc is the number of broken fibers belonging to
the percolating crack. Thus, when Γ (t, δ) ≥ 6, we have
ρ = 1. On the other hand, as it has been observed in pre-
vious works [10,11], for higher temperatures and/or lower
strains, the fracture of the bundle is caused by many small
cracks, none of then large enough to percolate through the
system. Thus, for a fixed temperature, if one starts with
a large enough strain δ0 and one decreases it, the system
goes from a regime where ρ = 1 to another regime where
ρ→ 0. This behaviour is the same as the one encountered
in the percolation problem.

Figure 1 shows the density of the percolation cluster ρ
versus the initial strain δ0, for two different temperatures.
As one sees, ρ = 1 for high values of δ0, and jumps to
zero for low enough value of δ0. So, we may assume that,
for a fixed temperature, there is a critical value δ0c above
which one observes a percolation crack, and below which
there is no percolation at all. Another interesting feature
that one can observe in Figure 1 is that, if one substitutes
into equation (5) the values of t and δ0c corresponding to
the transition region (δ0 ∼ 1.18 for t = 1.0 and δ0 ∼ 1.37
for t = 4.0), we get for both instances Γ (t, δ) ∼ 1.73.
The fundamental reason for obtaining this value will be
explained below.

In contrast to that described above, the same be-
haviour does not occur when we keep δ0 fixed and change
the temperature. Figure 2 shows the results obtained for
the density of the percolation cluster ρ versus tempera-
ture t, for δ0 = 1.4. We observe that, initially, ρ decreases

2 3 4 5 6
t

0.0

0.2

0.4

0.6

0.8

1.0

ρ

Fig. 2. Density of the percolating cluster ρ versus tempera-
ture for an initial strain δ0 = 1.4 and three different system
sizes: L = 800 (open squares); L = 900 (filled circles) and
L = 1000 (open diamonds). The data were averaged over 1000
statistically independent samples.

as the temperature t increases, and around t ∼ 4.5, the
value of ρ seems to go to zero. However, an additional
increase in the temperature will revert the process and
a minimum appears. Note that at the point of minimum
again (Γ (t = 4.5, δ = 1.4) ∼ 1.73), which is the same value
reported above. For low temperatures (t < 2.0), when a
fiber breaks, the probability is so high that this rupture
initiates a cascade which breaks the whole bundle. By in-
creasing the temperature, a number of small cracks are
formed, inhibiting the formation of a percolating cluster
and the density ρ decreases. However, all those processes
occur in the first step of the simulation when Nq attempts
to break the bundle are performed. Thus, for t < 4.5, the
bundle has been broken due to the crack which percolates
the system during the first Nq attempts to break it. For
t > 4.5, all the first Nq attempts do not succeed to gen-
erate a crack which percolates the bundle. However, some
fibers have been broken and cracks were formed. In the
second step of the simulation, a new value of δ is used
(higher than δ0) and a new set of Nq trials are chosen.
But now one has a higher value for Γ (t, δ) therefore it is
easier to produce a large crack which percolates the bun-
dle. By increasing the temperature, a smaller number of
fibers are broken in the first Nq attempts, and then, in the
second step, there are more unbroken fibers and therefore
the density ρ increases, thus forming a minimum in the
graph of Figure 2.

In fact, we can assume that there is a critical value
for Γ (t, δ) ∼ 1.73 that defines the transition between two
regimes. In the first one, a catastrophic fracture occurs
due to the first attempt to break the bundle, while in
the second case the rupture of the bundle occurs due to
the formation of small cracks, which weaken the bundle.
A percolating crack may also occur in the second case,
however the fracture dynamics is given by the weakening
of the bundle not by the catastrophic propagation of a
crack.
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Fig. 3. (a) Density of the percolating cluster ρ versus Γ for five different system sizes; (b) Zoom of the region corresponding
to the small box drawn in the left plot, showing more clearly the crossing of the curves. The data were averaged over 1000
statistically independent samples.

In order to consider the present model in the context
of percolation theory, we shall use the parameter Γ as an
arbitrary parameter without regarding it as a function of
the strain δ and temperature t. Within the percolation
point of view, we map the original model into a triangular
lattice where the empty sites corresponds to the unbroken
fibers. The parameter Γ is the analog to the percolation
probability. The algorithm for the mechanism of fracture
is mapped into the following algorithm for the percola-
tion problem. An empty site (unbroken fiber) i is chosen
at random; its occupation (failure) probability Pi is cal-
culated by dividing Γ by the number of its neighbouring
empty sites (unbroken fibers) plus one. This probability Pi
is compared with a random number r ∈ [0, 1); If Pi > r,
the site is occupied (the fiber is broken) and a cluster
(crack) can be formed, i.e., an empty neighbouring site
(an unbroken neighbouring fiber) is randomly chosen and
the process are repeated; Otherwise, another site, on Nq
in total, is chosen.

When a cluster is formed, we test if it percolated
through the system. If it does, we calculate the density
ρ of the percolating cluster. Figure 3a shows the results
obtained for several system sizes. Two regions are sepa-
rated by the transition point Γc. The larger the system
size, more clearly is the transition between those two re-
gions. Observe in the detail, shown in Figure 3b, that a
second order phase transition takes place at Γc = 1.733(1).
This implies that, at that point, clusters of all sizes should
be present, as confirmed by the results shown in Figure 4.
In this figure, the results have been obtained for a system
size L = 5000 (2.5 × 107 fibers) and averaged over 1000
samples (it took nearly 24h on a Sun Enterprise 8GB com-
puter) which gives the following power law

H(S) ∼ S−τ , (7)

where τ = 2.037 ± 0.007. A finite size analysis can be
performed by plotting τ(L) as a function of L−1/ν, where ν
is the exponent related to the divergence of the correlation
length at the transition. We tested several values of ν and
the best linear fitting was obtained for ν = 4/3, as shown
in Figure 5. This value corresponds to the exact exponent
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Fig. 4. Log-log plot of the averaged number of cracks H(S)
versus the crack size S for L = 5000 at Γc = 1.733. The points
have been obtained by averaging over 1000 statistically inde-
pendent samples. The data show a power law behaviour (ex-
pected at the criticality) with exponent τ = 2.037±0.007. The
insert shows a detail of the whole set. The solid line in this
insert has exponent 2.037.

ν for percolation at d = 2. The value of the exponent τ
for an infinite lattice is, then, evaluated to be τ(∞) =
2.05±0.01, in an excellent agreement with the theoretical
value, τ∞ = 2.055 [12].

In order to check if our problem belongs to the same
universality as the percolation problem, we have done a
finite-size scaling analysis by assuming the scaling law [12]

ρ(Γ,L) = L−β/νψ
(
εL1/ν

)
, (8)

where

ε =
∣∣∣∣1− Γ

Γc

∣∣∣∣, (9)

ψ is a universal function of εL1/ν only, and β and ν are the
critical exponents for the infinite lattice. Figure 6 shows
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Fig. 5. Estimate of the value of τ∞. We plot the value of
τ (L) versus L−1/ν with ν = 4/3. A linear regression has been
performed, giving τ∞ = 2.05 ± 0.01.
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Fig. 6. Plot of the scaling relation ρLβ/ν versus εL1/ν for nine
system sizes (provided in the legend) with Γc = 1.733, β = 0.14
and ν = 4/3. The data were averaged over 1000 samples.

the finite-size scaling plot ρLβ/ν versus εL1/ν for nine sizes
of L. We have used Γc = 1.733, ν = 4/3 and the best value
of β which validates equation (8) is β = 0.14. This value
is also in an excellent agreement with the known value for
the usual percolation.

Now, returning to the original fracture model, we use
equation (5) to obtain the critical temperature tc in terms
of the critical parameter Γc and of the initial strain δ0

tc =
δ2
0 − 1

ln(Γc)− ln(δ0)
· (10)

Using this expression we plot the fracture regimes dia-
gram, in the temperature t versus the initial strain δ0
plane, depicted in Figure 7. Two fracture regimes are sep-
arated by a second order transition line. In region C the
fracture is catastrophic and in region S we have the shred-
ding regime. Note that the catastrophic regime only oc-
curs for δ0 > 1 and for low temperatures. In this figure,
the solid line corresponds to the analytical results, and the
points were obtained by simulations.
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Fig. 7. Fracture regimes diagram of the temperature t in func-
tion of the initial strain δ0, where C represents the catastrophic
regime and S represents the shredding regime. Solid line repre-
sents the theoretical curve and filled circles represent the data
obtained in our simulations.

4 Conclusions

In conclusion, we have studied a model for fracture in fi-
brous materials in (2+1)-dimensions and shown the ex-
istence of two failure regimes: the catastrophic regime,
where the initial deformation produces a single crack
which percolates through the bundle; and the slowly
shredding regime, where the initial deformation produces
small cracks which gradually weaken the bundle. By us-
ing percolation theory and finite-size scaling arguments,
we were able of finding the transition line between these
regimes. Our results indicate that this transition is of sec-
ond order. Finally, we have shown that this model belongs
to the same universality class as the percolation problem.
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